Archive for category: Article of the Week

Editorial: A urologists’ guide to the multi-parametric magnetic resonance imaging (mpMRI)-galaxy

The rise of multi-parametric MRI (mpMRI) for the assessment of patients with suspicion of prostate cancer has led to an enormous shift in the practice of every urologist dealing with frontline diagnostics [1].

At the same time, researchers and industry have identified acres of fruitful soil to place the seeds of their respective interests, sometimes in collaboration with each other producing valuable contributions to this shift in practice, sometimes taking benefits by merely assimilating themselves or their product to this development.

Both, the speed of change and the extent of proliferation, make it almost impossible for by-standing clinicians to keep up and filter the evidence-based essence for their local practice.

There are three important issues that need to be considered:

1 The Quality of mpMRI

The development of mpMRI for prostate assessment occurred over the last decade with well-known leaders pushing the frontiers. Their research benefitted from their individual experience of interpreting and reporting MRIs. This is then reflected in their outcomes in form of cancer detection rates and accuracy. More recently we have identified that achieving these results must involve standardisation of MRI protocols and reading [2-4], systematic training in validated courses and a significant learning curve [5]. The latter is only possible to achieve if the practice is embedded in a collaborative team of radiologists, pathologists and urologists. But even then it may be impossible for local teams to deliver the published accuracy, and the urologists and radiologists need to be mindful of that when counselling patients using mpMRI in their local environment.

2 The Technical and Clinical Validity of MRI-Based Biopsies

Transperineal vs transrectal, targeted alone vs targeted with systematic, cognitive vs fusion biopsies – these are the key debates surrounding the application of mpMRI into the urologists’ armamentarium. For none of them there is or will be a unified answer.

Transrectal approaches suit office-based provision of primary diagnostics in many European and USA health economies; although purists can say that the increasing risk of sepsis from antibiotic-resistant bacteria is not acceptable. But, favouring the less infection-prone transperineal approaches will have impact on theatre capacities even in a hospital-based health system like the UK.

Considering the current real-time quality of mpMRI, systematic biopsies in addition to targeted ones are still necessary. Urologists as a group have to come to an agreement about what is acceptable as a remaining risk when reducing or omitting systematic cores.

Cognitive targeting has been shown to be highly accurate; yet, fusion may offer standardisation and reduce user dependency. Not all fusion software on the market has undergone a thorough validated technical development and clinical accuracy evaluation. Peer-reviewed publications can be found involving the systems Urostation-Koelis, Uronav-Philips, Artemis and BiopSee-Medcom.

3 Translation into Clinical Practice

The positioning of the mpMRI within the assessment algorithm is key to optimise the benefit. Use as a pre-biopsy assessment tool may allow omission of further biopsies in some patients or facilitate targeting [6]. However, an established skill in the use of mpMRI and mpMRI-based biopsy is essential. Many UK centres have started the use of mpMRI in their practice further downstream in patients with persistent suspicion after negative first biopsies with good results for patients. It is already part of guidance that active surveillance should involve the use of MRI [1]. Some leading centres advocate that the diagnosis should be confirmed by MRI-based targeted and systematic biopsies.

Knowing that mpMRI will improve the accuracy of our assessment, we need to re-consider follow-up protocols. Increased certainty should be reflected in an improved cancer-related outcome, better patient experience and reduction in costs for the health system.

Prostate mpMRI as part of the urologists’ armamentarium is here to stay. A standardised team- and evidence-based approach will allow us to remain in control of the destination it leads us to.

Christof Kastner
Cambridge University Hospitals, Cambridge, UK

Video: Is a 12-core biopsy still necessary in addition to a targeted biopsy?

In patients with a previous negative prostate biopsy and a suspicious lesion on magnetic resonance imaging, is a 12-core biopsy still necessary in addition to a targeted biopsy?

Simpa S. Salami*, Eran Ben-Levi, Oksana Yaskiv, Laura Ryniker*, Baris Turkbey§, Louis R. Kavoussi*, Robert Villani† and Ardeshir R. Rastinehad*

 

*The Arthur Smith Institute for Urology, Department of Diagnostic and Interventional Radiology, and Department of Pathology, Hofstra North Shore-LIJ School of Medicine, New Hyde Park, NY, and § Molecular Imaging Program, National Institutes of Health, Bethesda, MD, USA

 

OBJECTIVES

To evaluate the performance of multiparametric magnetic resonance imaging (mpMRI) in predicting prostate cancer on repeat biopsy; and to compare the cancer detection rates (CDRs) of MRI/transrectal ultrasonography (TRUS) fusion-guided biopsy with standard 12-core biopsy in men with at least one previous negative biopsy.

PATIENTS AND METHODS

We prospectively enrolled men with elevated or rising PSA levels and/or abnormal digital rectal examination into our MRI/TRUS fusion-guided prostate biopsy trial. Participants underwent a 3 T mpMRI with an endorectal coil. Three radiologists graded all suspicious lesions on a 5-point Likert scale. MRI/TRUS fusion-guided biopsies of suspicious prostate lesions and standard TRUS-guided 12-core biopsies were performed. Analysis of 140 eligible men with at least one previous negative biopsy was performed. We calculated CDRs and estimated area under the receiver operating characteristic curves (AUCs) of mpMRI in predicting any cancer and clinically significant prostate cancer.

RESULTS

The overall CDR was 65.0% (91/140). Higher level of suspicion on mpMRI was significantly associated with prostate cancer detection (P < 0.001) with an AUC of 0.744 compared with 0.653 and 0.680 for PSA level and PSA density, respectively. The CDRs of MRI/TRUS fusion-guided and standard 12-core biopsy were 52.1% (73/140) and 48.6% (68/140), respectively (P = 0.435). However, fusion biopsy was more likely to detect clinically significant prostate cancer when compared with the 12-core biopsy (47.9% vs 30.7%; P < 0.001). Of the cancers missed by 12-core biopsy, 20.9% (19/91) were clinically significant. Most cancers missed by 12-core biopsy (69.6%) were located in the anterior fibromuscular stroma and transition zone. Using a fusion-biopsy-only approach in men with an MRI suspicion score of ≥4 would have missed only 3.5% of clinically significant prostate cancers.

CONCLUSIONS

Using mpMRI and subsequent MRI/TRUS fusion-guided biopsy platform may improve detection of clinically significant prostate cancer in men with previous negative biopsies. Addition of a 12-core biopsy may be needed to avoid missing some clinically significant prostate cancers.

Read more articles of the week

Article of the Week: Minimum five-year follow-up of 1,138 consecutive laparoscopic radical prostatectomies

Every week the Editor-in-Chief selects the Article of the Week from the current issue of BJUI. The abstract is reproduced below and you can click on the button to read the full article, which is freely available to all readers for at least 30 days from the time of this post.

In addition to the article itself, there is an accompanying editorial written by a prominent member of the urological community. This blog is intended to provoke comment and discussion and we invite you to use the comment tools at the bottom of each post to join the conversation.

Finally, the third post under the Article of the Week heading on the homepage will consist of additional material or media. This week we feature a video from Ricardo Soares, discussing his paper. 

If you only have time to read one article this week, it should be this one.

Minimum five-year follow-up of 1,138 consecutive laparoscopic radical prostatectomies

Ricardo Soares, Antonina Di Benedetto, Zach Dovey, Simon Bott*, Roy G. McGregor† and Christopher G. Eden

 

Department of Urology, Royal Surrey County Hospital, Guildford, *Department of Urology, Frimley Park Hospital, Frimley, Surrey, UK, and Cornwall Regional Hospital, Montego Bay, Jamaica

 

Read the full article
OBJECTIVES

To investigate the long-term outcomes of laparoscopic radical prostatectomy (LRP).

PATIENTS AND METHODS

In all, 1138 patients underwent LRP during a 163-month period from 2000 to 2008, of which 51.5%, 30.3% and 18.2% were categorised into D’Amico risk groups of low-, intermediate- and high-risk, respectively. All intermediate- and high-risk patients were staged by preoperative magnetic resonance imaging or computed tomography and isotope bone scanning, and had a pelvic lymph node dissection (PLND), which was extended after April 2008. The median (range) patient age was 62 (40–78) years; body mass index was 26 (19–44) kg/m2; prostate-specific antigen level was 7.0 (1–50) ng/mL and Gleason score was 6 (6–10). Neurovascular bundle was preservation carried out in 55.3% (bilateral 45.5%; unilateral 9.8%) of patients.

RESULTS

The median (range) gland weight was 52 (14–214) g. The median (range) operating time was 177 (78–600) min and PLND was performed in 299 patients (26.3%), of which 54 (18.0%) were extended. The median (range) blood loss was 200 (10–1300) mL, postoperative hospital stay was 3 (2–14) nights and catheterisation time was 14 (1–35) days. The complication rate was 5.2%. The median (range) LN count was 12 (4–26), LN positivity was 0.8% and the median (range) LN involvement was 2 (1–2). There was margin positivity in 13.9% of patients and up-grading in 29.3% and down-grading in 5.3%. While 11.4% of patients had up-staging from T1/2 to T3 and 37.1% had down-staging from T3 to T2. One case (0.09%) was converted to open surgery and six patients were transfused (0.5%). At a mean (range) follow-up of 88.6 (60–120) months, 85.4% of patients were free of biochemical recurrence, 93.8% were continent and 76.6% of previously potent non-diabetic men aged <70 years were potent after bilateral nerve preservation.

CONCLUSIONS

The long-term results obtainable from LRP match or exceed those previously published in large contemporary open and robot-assisted surgical series.

Read more articles of the week

Editorial: The need for standardised reporting of complications

In the context of diversifying practice models, implementation of new technologies such as the Da Vinci surgical robot and rising healthcare costs, there is growing interest in evaluating the quality of surgical work. This extends into health policy, as reimbursement penalties are introduced for ‘inappropriate’ outcomes (e.g. excessive readmissions). Consequently, there is a significant need to provide an accurate assessment of complications and mortality when reporting on surgical outcomes.

Despite the constant use of outcomes data to measure effectiveness in surgery, no current urology guidelines demand the standardised reporting of surgical complications [1]. As randomised controlled trials are uncommon within the surgical setting, and are associated with significant biases [2], there is a distinct need for a uniform reporting system after urological surgeries. Indeed, the lack of such makes it challenging to compare surgical outcomes between techniques, surgeons and institutions, thus hampering the interpretation of study results [3]. The ongoing (and never-ending) debate on the comparative effectiveness of open vs robot-assisted radical prostatectomy (RP) highlights the need for standardised methods to assess superiority (or inferiority) of surgical results [4].

In this issue of the BJUI, Soares et al. [5] present a single-surgeon study of 1138 laparoscopic RPs (LRPs) with a standardised approach between the years 2000 and 2008, and their 5-year follow-up. Whereas the functional and/or oncological equivalency of LRP compared with open RP has been reported before [6], perhaps the outstanding contribution of this study is the use of the Martin-Donat criteria to report and analyse surgical results [3, 7]. In 2002, Martin et al. [7] introduced a list of 10 standard criteria for accurate and comprehensive reporting of surgical complications (e.g. methods of data acquisition, duration of follow-up, definition of complications, hospital length of stay).

In Table 6 of their manuscript, Soares et al. [5] display surgical and/or oncological outcomes of a total of 17 studies on LRP (including their own data). This table suggests the obvious: there is no consistency of reporting on outcomes. In the 2007 Donat [3] analysis of surgical complications reporting in the urological literature, only 2% of a total of 109 studies met nine to 10 of the critical Martin criteria. Interestingly, these shortcomings have been addressed in more contemporary years as the number of studies complying with most of the Martin criteria has increased between 1999/2000 and 2009/2010 [1]. Yet, despite the increasing use of classification systems for outcomes of surgery and standardised reporting of complications (e.g. Clavien-Dindo classification), they are not routinely applied [1, 8].

In an era where the adoption of a certain surgical approach or technique needs to be carefully weighted against a demand for greater value and decreased costs, a simple case series on positive outcomes is simply not sufficient [9]; at the very least, guideline-compliant assessment of outcomes should be the standard of care.

Read the full article

 

Marianne Schmid*, Christian P. Meyer*† and Quoc-Dien Trinh*

 

*Division of Urologic Surgery and Center for Surgery and Public Health, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA and† Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

 

References

1 Mitropoulos D, Artibani W, Graefen M, Remzi M, Roupret M, Truss MReporting and grading of complications after urologic surgical procedures: an ad hoc EAU guidelines panel assessment and recommendations. Eur Urol 2012; 61: 3419

 

 

 

4 Schmid M, Gandaglia G, Trinh QD. The controversy that will not go away. Eur Urol 2014; [Epub ahead of print]. doi: 10.1016/ j.eururo.2014.02.052

 

5 Soares R, Di Benedetto A, Dovey Z, Bott S, McGregor R, Eden CMinimum 5-year follow-up of 1138 consecutive laparoscopic radical prostatectomies. BJU Int 2014; [Epub ahead of print]. doi: 10.1111/ bju.12887

 

6 Hruza M, Bermejo JL, Flinspach B et al. Long-term oncological outcomes after laparoscopic radical prostatectomy. BJU Int 2013; 111:  27180

 

7 Martin RC 2nd, Brennan MF, Jaques DP. Quality of complication reporting in the surgical literature. Ann Surg 2002; 235: 80313

 

 

9 Novara G, Ficarra V, DElia C, Secco S, Cavalleri S, Artibani W. Trifecta outcomes after robot-assisted laparoscopic radical prostatectomy. BJU Int 2011; 107: 1004

 

Video: 1,138 consecutive laparoscopic radical prostatectomies – Minimum five-year follow-up

Minimum five-year follow-up of 1,138 consecutive laparoscopic radical prostatectomies

Ricardo Soares, Antonina Di Benedetto, Zach Dovey, Simon Bott*, Roy G. McGregor† and Christopher G. Eden

 

Department of Urology, Royal Surrey County Hospital, Guildford, *Department of Urology, Frimley Park Hospital, Frimley, Surrey, UK, and Cornwall Regional Hospital, Montego Bay, Jamaica

 

Read the full article
OBJECTIVES

To investigate the long-term outcomes of laparoscopic radical prostatectomy (LRP).

PATIENTS AND METHODS

In all, 1138 patients underwent LRP during a 163-month period from 2000 to 2008, of which 51.5%, 30.3% and 18.2% were categorised into D’Amico risk groups of low-, intermediate- and high-risk, respectively. All intermediate- and high-risk patients were staged by preoperative magnetic resonance imaging or computed tomography and isotope bone scanning, and had a pelvic lymph node dissection (PLND), which was extended after April 2008. The median (range) patient age was 62 (40–78) years; body mass index was 26 (19–44) kg/m2; prostate-specific antigen level was 7.0 (1–50) ng/mL and Gleason score was 6 (6–10). Neurovascular bundle was preservation carried out in 55.3% (bilateral 45.5%; unilateral 9.8%) of patients.

RESULTS

The median (range) gland weight was 52 (14–214) g. The median (range) operating time was 177 (78–600) min and PLND was performed in 299 patients (26.3%), of which 54 (18.0%) were extended. The median (range) blood loss was 200 (10–1300) mL, postoperative hospital stay was 3 (2–14) nights and catheterisation time was 14 (1–35) days. The complication rate was 5.2%. The median (range) LN count was 12 (4–26), LN positivity was 0.8% and the median (range) LN involvement was 2 (1–2). There was margin positivity in 13.9% of patients and up-grading in 29.3% and down-grading in 5.3%. While 11.4% of patients had up-staging from T1/2 to T3 and 37.1% had down-staging from T3 to T2. One case (0.09%) was converted to open surgery and six patients were transfused (0.5%). At a mean (range) follow-up of 88.6 (60–120) months, 85.4% of patients were free of biochemical recurrence, 93.8% were continent and 76.6% of previously potent non-diabetic men aged <70 years were potent after bilateral nerve preservation.

CONCLUSIONS

The long-term results obtainable from LRP match or exceed those previously published in large contemporary open and robot-assisted surgical series.

Read more articles of the week

Article of the Month: The PROMEtheuS Project: Bringing PHI to prostate Cancer

Every week the Editor-in-Chief selects the Article of the Week from the current issue of BJUI. The abstract is reproduced below and you can click on the button to read the full article, which is freely available to all readers for at least 30 days from the time of this post.

In addition to the article itself, there is an accompanying editorial written by a prominent member of the urological community. This blog is intended to provoke comment and discussion and we invite you to use the comment tools at the bottom of each post to join the conversation.

Finally, the third post under the Article of the Week heading on the homepage will consist of additional material or media. This week we feature a video from Dr. Alberto Abrate, discussing his paper. 

If you only have time to read one article this week, it should be this one.

Clinical performance of Prostate Health Index (PHI) for prediction of prostate cancer in obese men: data from a multicenter European prospective study, PROMEtheuS project

Alberto Abrate, Massimo Lazzeri, Giovanni Lughezzani, Nicolòmaria Buffi, Vittorio Bini*,Alexander Haese†, Alexandre de la Taille‡, Thomas McNicholas§, Joan Palou Redorta¶,Giulio M. Gadda, Giuliana Lista, Ella Kinzikeeva, Nicola Fossati, Alessandro Larcher,Paolo Dell’Oglio, Francesco Mistretta, Massimo Freschi** and Giorgio Guazzoni

Division of Oncology, Unit of Urology, URI, **Department of Pathology, IRCCS Ospedale San Raffaele, UniversitàVita-Salute San Raffaele, Milan, *Department of Internal Medicine, University of Perugia, Perugia, Italy,†Martini-ClinicProstate Cancer Center, University Clinic Hamburg-Eppendorf, Hamburg, Germany,‡Department of Urology, APHPMondor Hospital, Créteil, France,§South Bedfordshire and Hertfordshire Urological Cancer Centre, Lister Hospital,Stevenage, UK, and¶Urologic Oncology Section of the Department of Urology and Radiology Department, FundaciòPuigvert, Barcelona, Spain

Read the full article
OBJECTIVES

To test serum prostate-specific antigen (PSA) isoform [-2]proPSA (p2PSA), p2PSA/free PSA (%p2PSA) and Prostate Health Index (PHI) accuracy in predicting prostate cancer in obese men and to test whether PHI is more accurate than PSA in predicting prostate cancer in obese patients.

PATIENTS AND METHODS

The analysis consisted of a nested case-control study from the pro-PSA Multicentric European Study (PROMEtheuS) project. The study is registered at https://www.controlled-trials.com/ISRCTN04707454. The primary outcome was to test sensitivity, specificity and accuracy (clinical validity) of serum p2PSA, %p2PSA and PHI, in determining prostate cancer at prostate biopsy in obese men [body mass index (BMI) ≥30 kg/m2], compared with total PSA (tPSA), free PSA (fPSA) and fPSA/tPSA ratio (%fPSA). The number of avoidable prostate biopsies (clinical utility) was also assessed. Multivariable logistic regression models were complemented by predictive accuracy analysis and decision-curve analysis.

RESULTS

Of the 965 patients, 383 (39.7%) were normal weight (BMI <25 kg/m2), 440 (45.6%) were overweight (BMI 25–29.9 kg/m2) and 142 (14.7%) were obese (BMI ≥30 kg/m2). Among obese patients, prostate cancer was found in 65 patients (45.8%), with a higher percentage of Gleason score ≥7 diseases (67.7%). PSA, p2PSA, %p2PSA and PHI were significantly higher, and %fPSA significantly lower in patients with prostate cancer (P < 0.001). In multivariable logistic regression models, PHI significantly increased accuracy of the base multivariable model by 8.8% (P = 0.007). At a PHI threshold of 35.7, 46 (32.4%) biopsies could have been avoided.

CONCLUSION

In obese patients, PHI is significantly more accurate than current tests in predicting prostate cancer.

Read more articles of the week

Editorial: Time to replace PSA with the PHI?

Yet more evidence that the PHI consistently outperforms PSA across diverse populations

The Prostate Health Index (PHI) has regulatory approval in >50 countries worldwide and is now being incorporated into prostate cancer guidelines; for example, the 2014 National Comprehensive Cancer Network Guidelines for early prostate cancer detection discuss the PHI as a means to improve specificity, using a threshold score of 35 [1]. The PHI is also discussed in the Melbourne Consensus Statement [2], and it has been incorporated into the multivariable Rotterdam risk calculator smartphone app for use in point-of-care decisions [3].

As the use of this test continues to expand, more data on its performance in specific at-risk populations are of great interest. The investigators from the PROMEtheus multicentre European trial have previously validated the use of the PHI in men with a positive family history of prostate cancer [4]. The new study by Abrate et al. in this issue of BJUI instead addresses another high-risk population – obese men – who have previously been shown to have a greater risk of aggressive prostate cancer [5].

Among the 965 participants in the PROMEtheus study, 14.7% were considered obese based on a body mass index ≥30 kg/m2. In this group, 45.8% were diagnosed with prostate cancer from a ≥12-core biopsy, and 67.7% had a Gleason score ≥7. Overall, the PHI significantly outperformed PSA for prostate cancer detection in men with a body mass index ≥30 kg/m2 (area under the curve 0.839 vs 0.694; P < 0.001). At 90% sensitivity, the threshold for PHI in obese men was 35.7, with a specificity of 52.3%. The PHI also had the best performance for the detection of Gleason ≥7 disease, with an area under the curve of 0.89.

These findings add to the highly consistent body of evidence supporting the use of the PHI in early prostate cancer detection and risk stratification. In fact, all published studies to date have shown that the PHI outperforms PSA for detection of overall and high-grade prostate cancer detection on biopsy [6]. Numerous studies have also shown a role for the PHI in patient selection and monitoring during active surveillance [7, 8]. Expanded use of this test is warranted to reduce unnecessary biopsies and better identify cancers with life-threatening potential.

Read the full article
Stacy Loeb
Department of Urology and Population Health, New York University, New York, NY, USA

 

References

1 National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology. Prostate Cancer Early Detection Version 2014. https://www.nccn.org/professionals/physician_gls/pdf/prostate_detection.pdf.Accessed May 26, 2014

2 Murphy DG, Ahlering T, Catalona WJ et al. The melbourne consensus statement on the early detection of prostate cancer. BJU Int 2014; 113:186–8

3 Roobol M, Salman J, Azevedo N. Abstract 857: The Rotterdam Prostate Cancer Risk Calculator: Improved Prediction with More Relevant Pre-Biopsy Information, Now in the Palm of Your Hand. Stockholm: European Association of Urology, 2014

4 Lazzeri M, Haese A, Abrate A et al. Clinical performance of serum prostate-specific antigen isoform [-2]pr oPSA (p2PS A) and its derivatives, %p2PSA and the prostate health index (PHI), in men with a family history of prostate cancer: results from a multicentre European study, the PROMEtheuS project. BJU Int 2013; 112:313–21

5 Freedland SJ, Banez LL, Sun LL, Fitzsimons NJ, Moul JW. Obese men have higher-grade and larger tumors: an analysis of the duke prostate center database. Prostate Cancer Prostatic Dis 2009; 12: 259–63

6 Filella X, Gimenez N. Evaluation of [-2] proPSA and Prostate Health Index (phi) for the detection of prostate cancer: a systematic review and meta-analysis. Clin Chem Lab Med 2013; 51: 729–39

7 Tosoian JJ, Loeb S, Feng Z et al. Association of [-2]proPSA with Biopsy Reclassification During Active Surveillance for Prostate Cancer. J Urol2012; 188: 1131–6

8 Hirama H, Sugimoto M, Ito K, Shiraishi T, Kakehi Y. The impact of baseline [-2]proPSA-related indices on the prediction of pathological reclassification at 1 year during active surveillance for low-risk prostate cancer: the Japanese multicenter study cohort. J Cancer Res Clin Oncol2014; 140: 257–63

 

Video: Clinical performance of PHI for prediction of prostate cancer: data from the PROMEtheuS project

Clinical performance of Prostate Health Index (PHI) for prediction of prostate cancer in obese men: data from a multicenter European prospective study, PROMEtheuS project

Alberto Abrate, Massimo Lazzeri, Giovanni Lughezzani, Nicolòmaria Buffi, Vittorio Bini*,Alexander Haese†, Alexandre de la Taille‡, Thomas McNicholas§, Joan Palou Redorta¶,Giulio M. Gadda, Giuliana Lista, Ella Kinzikeeva, Nicola Fossati, Alessandro Larcher,Paolo Dell’Oglio, Francesco Mistretta, Massimo Freschi** and Giorgio Guazzoni

Division of Oncology, Unit of Urology, URI, **Department of Pathology, IRCCS Ospedale San Raffaele, UniversitàVita-Salute San Raffaele, Milan, *Department of Internal Medicine, University of Perugia, Perugia, Italy,†Martini-ClinicProstate Cancer Center, University Clinic Hamburg-Eppendorf, Hamburg, Germany,‡Department of Urology, APHPMondor Hospital, Créteil, France,§South Bedfordshire and Hertfordshire Urological Cancer Centre, Lister Hospital,Stevenage, UK, and¶Urologic Oncology Section of the Department of Urology and Radiology Department, FundaciòPuigvert, Barcelona, Spain

Read the full article
OBJECTIVES

To test serum prostate-specific antigen (PSA) isoform [-2]proPSA (p2PSA), p2PSA/free PSA (%p2PSA) and Prostate Health Index (PHI) accuracy in predicting prostate cancer in obese men and to test whether PHI is more accurate than PSA in predicting prostate cancer in obese patients.

PATIENTS AND METHODS

The analysis consisted of a nested case-control study from the pro-PSA Multicentric European Study (PROMEtheuS) project. The study is registered at https://www.controlled-trials.com/ISRCTN04707454. The primary outcome was to test sensitivity, specificity and accuracy (clinical validity) of serum p2PSA, %p2PSA and PHI, in determining prostate cancer at prostate biopsy in obese men [body mass index (BMI) ≥30 kg/m2], compared with total PSA (tPSA), free PSA (fPSA) and fPSA/tPSA ratio (%fPSA). The number of avoidable prostate biopsies (clinical utility) was also assessed. Multivariable logistic regression models were complemented by predictive accuracy analysis and decision-curve analysis.

RESULTS

Of the 965 patients, 383 (39.7%) were normal weight (BMI <25 kg/m2), 440 (45.6%) were overweight (BMI 25–29.9 kg/m2) and 142 (14.7%) were obese (BMI ≥30 kg/m2). Among obese patients, prostate cancer was found in 65 patients (45.8%), with a higher percentage of Gleason score ≥7 diseases (67.7%). PSA, p2PSA, %p2PSA and PHI were significantly higher, and %fPSA significantly lower in patients with prostate cancer (P < 0.001). In multivariable logistic regression models, PHI significantly increased accuracy of the base multivariable model by 8.8% (P = 0.007). At a PHI threshold of 35.7, 46 (32.4%) biopsies could have been avoided.

CONCLUSION

In obese patients, PHI is significantly more accurate than current tests in predicting prostate cancer.

Read more articles of the week

Article of the Week: Co-administration of TRPV4 and TRPV1 antagonists potentiate the effect of each drug

Every week the Editor-in-Chief selects the Article of the Week from the current issue of BJUI. The abstract is reproduced below and you can click on the button to read the full article, which is freely available to all readers for at least 30 days from the time of this post.

In addition to the article itself, there is an accompanying editorial written by a prominent member of the urological community. This blog is intended to provoke comment and discussion and we invite you to use the comment tools at the bottom of each post to join the conversation.

Finally, the third post under the Article of the Week heading on the homepage will consist of additional material or media. This week we feature a video from Prof. Francisco Cruz, discussing his paper. 

If you only have time to read one article this week, it should be this one.

Co-administration of transient receptor potential vanilloid 4 (TRPV4) and TRPV1 antagonists potentiate the effect of each drug in a rat model of cystitis

Ana Charrua†‡§, Célia D. Cruz‡§, Dick Jansen¶ , Boy Rozenberg¶ , John Heesakkers¶ and Francisco Cruz*†§

*Department of Urology, S. João Hospital, †Department of Renal, Urologic and Infectious Disease, ‡Department of Experimental Biology, Faculty of Medicine of the University of Porto, §IBMC – Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal, and ¶Department of Urology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

Read the full article
OBJECTIVE

To investigate transient receptor potential vanilloid 4 (TRPV4) expression in bladder afferents and study the effect of TRPV4 and TRPV1 antagonists, alone and in combination, in bladder hyperactivity and pain induced by cystitis.

MATERIALS AND METHODS

TRPV4 expression in bladder afferents was analysed by immunohistochemistry in L6 dorsal root ganglia (DRG), labelled by fluorogold injected in the urinary bladder. TRPV4 and TRPV1 co-expression was also investigated in L6 DRG neurones of control rats and in rats with lipopolysaccharide (LPS)-induced cystitis. The effect of TRPV4 antagonist RN1734 and TRPV1 antagonist SB366791 on bladder hyperactivity and pain induced by cystitis was assessed by cystometry and visceral pain behaviour tests, respectively.

RESULTS

TRPV4 is expressed in sensory neurones that innervate the urinary bladder. TRPV4-positive bladder afferents represent a different population than the TRPV1-expressing bladder afferents, as their co-localisation was minimal in control and inflamed rats. While low doses of RN1734 and SB366791 (176.7 ng/kg and 143.9 ng/kg, respectively) had no effect on bladder activity, the co-administration of the two totally reversed bladder hyperactivity induced by LPS. In these same doses, the antagonists partially reversed bladder pain behaviour induced by cystitis.

CONCLUSIONS

TRPV4 and TRPV1 are present in different bladder afferent populations. The synergistic activity of antagonists for these receptors in very low doses may offer the opportunity to treat lower urinary tract symptoms while minimising the potential side-effects of each drug.

Read more articles of the week

Editorial: How much potential for Transient Receptor Potential channels in the bladder?

In this issue of the BJUI, Charrua et al. [1] report on the possible interaction of two members of the vanilloid subfamily of transient receptor potential (TRP) channels in the control of rat urinary bladder function, TRPV1 and TRPV4. TRP channels are a family of cation-selective channels with 28 known mammalian members. Six of them belong to the subfamily of vanilloid receptors (TRPV channels) and fall into four groups, TRPV1/TRPV2, TRPV3, TRPV4, and TRPV5/TRPV6. The physiological and pharmacological interest in these channels results largely from the finding that they can be activated by a plethora of physical and chemical stimuli; accordingly, they have been implicated in sensory function and pathophysiology of many organ systems [2]. A breakthrough in our understanding of such channels came with the reporting of TRPV1 and TRPV4 knock-out mice, which also exhibit a bladder phenotype; the role of TRP channels in lower urinary tract function has comprehensively been reviewed recently [3].

While the physiological regulation of TRPV1 by endogenous mediators is poorly understood, natural compounds such as capsaicin or resiniferatoxin are acute agonists of TRPV1 channels; however, over time, they desensitise the channel and hence act as inhibitors. These compounds have shown promise in the treatment of detrusor overactivity but also have problems attributed to their initial agonist effects [3]. TRPV4 are activated experimentally by hypotonicity induced cell swelling and several chemicals and more physiologically by moderate heat, stretch and shear stress, leading to the proposition that they may functions as a stretch sensor in the bladder. The inhibitory effects of TRPV1 agonists manifest only after prolonged exposure once desensitisation of their agonist effects occurs, and this initial agonistic phase is a source of undesirable effects. Therefore, a search is on for small molecules that have direct antagonist effects.

Charrua et al. [1] now report that two small molecule antagonists at TRPV1 and TRPV4, (SB355791 and RN1734, respectively) even in high doses did not affect bladder function in control rats. Intravesical installation of lipopolysaccharide is used to create an animal model of cystitis as it induces inflammation, detrusor overactivity and bladder pain. In this model, a high dose of the TRPV4 inhibitor reduced detrusor overactivity, whereas even the high dose of the TRPV1 inhibitor did not; however, a combination of ineffective doses of both inhibitors markedly decreased bladder reflex activity. On the other hand, each of the two drugs caused partial analgesia, but their combination was not more effective than either drug alone. This indicates an interesting functional interaction between TRPV1 and TRPV4 channels, which is specific for the overactivity vs the pain response. Previously, the Cruz group reported that bladder overactivity induced by nerve growth factor depends on the presence of functionally active TRPV1 [4]. Taken together this work shines light on networks of multiple mediators and their receptors that cooperate in the regulation of bladder function but previously have mainly been viewed in isolation. Such work may also have therapeutic consequences. As target-saturating concentrations of ligands at any of these receptors may cause relevant adverse effects, targeting multiple such receptors in low doses may open an avenue for a multi-pronged approach, particularly in patients with bladder dysfunction difficult to control with present treatment options.

This multiple target, low-dose approach is a therapeutically fascinating idea, but finding the right combination of doses in such a setting is a nightmare for any drug development scientist. Moreover, much of the specific role of such targets in pathophysiology remains to be explored before the present findings can be translated into clinical treatments, and the Charrua et al. study [1] will also help such efforts in other ways. Some of the initial thinking on the function of TRP channels in the control of bladder and other functions has been based on localisation studies with TRP channel antibodies, which may have been flawed. Similar to many other receptor antibodies [5], several of those directed against TRPV1 channels also have been shown to lack target specificity [6], leading to misunderstandings about the location and function of such channels. The validation for other TRPV1 and TRPV4 antibodies presented by Charrua et al. [1] will allow more robust studies in this regard and help to develop more valid understanding of TRP channels in physiology, pathophysiology and as treatment targets.

Read the full article
Martin C. Michel

 

Department of Pharmacolog y , Johannes Gutenberg University, Mainz, Germany

 

References

 

 

 

3 Franken J, Uvin P, de Ridder D, Voets T. TRP channels in lower urinary tract dysfunction. Br J Pharmacol 2014; 171: 2537–51

 

4 Frias B, Charrua A, Avelino A, Michel MC, Cruz F, Cruz CD. Transient receptor potential vanilloid 1 mediates nerve growth factor-induced bladder hyperactivity and noxious input. BJU Int 2012; 110: E422–8

 

5 Michel MC, Wieland T, Tsujimoto G. How reliable arG-protein-coupled receptor antibodies? Naunyn Schmiedebergs Arch Pharmacol 2009; 377: 385–8

 

6 Everaerts W, Sepúlveda MR, Gevaert T, Roskams T, Nilius B, De Ridder D. Where is TRPV1 expressed in the bladder, do we see the real channel? Naunyn Schmiedebergs Arch Pharmacol 2009; 379: 421–5

 

© 2024 BJU International. All Rights Reserved.